
MODULE - II

20MCA188 ARTIFICIAL

INTELLIGENCE (Elective-2) Selma Joseph A.

A heuristic is a technique designed for solving a problem more quickly when
classic methods are too slow or for finding an approximate solution when
classic methods fail to find any exact solution. The objective of a heuristic is to
produce a solution in a reasonable time that is good enough for solving the
problem at hand.

Heuristic function
A heuristic function, also called simply a heuristic, is a function that ranks
alternatives in search algorithms at each branching step based on available
information to decide which branch to follow.

Example:

Values of a heuristic function

• There are three different branches, say AB,
AC and AD, along which we can continue the
search for the goal node.

• Decide which one of these nodes is to be
selected.

• Obtain an estimate of the cheapest path from
the nodes to the goal node.

• Choose to proceed along the branch AC.
• These estimated costs define a heuristic

function for the problem.

Definition
The heuristic function for a search problem is a function h(n) defined as
follows:

h(n) = estimated cost of the cheapest path from the state at node n to a
goal state.

Remark

Unless otherwise specified, it will be assumed that a heuristic function h(n) has
the following properties:

1. h(n) ≥ 0 for all nodes n.
2. If n is the goal node, then h(n) = 0.

A heuristic function is said to be admissible if it never overestimates the cost
of reaching the goal, i.e. , the cost it estimates to reach the goal is not higher
than the lowest possible cost from the current point in the path.
Let h(n) be a heuristic function for a search problem. h(n) is the estimated
cost of reaching the goal from the state n. Let h*(n) be the optimal cost to
reach a goal from n.

We say that h(n) is admissible if

h(n) ≤ h *(n) for all n

Remarks
1. There are no limitations on the function h(n). Any function of our choice is
acceptable.
As an extreme case, the function h(n) defined by

h(n) = c for all n
where c is some constant can also be taken as a heuristic function.

The heuristic function defined by h(n) = 0 for all n is called the trivial
heuristic function.

2. The heuristic function for a search problem would make use of

information that are specific to the circumstances of the problem. Because of

this, there is no one method for constructing heuristic functions that are

applicable to all problems.

3. However, there is a standard way to construct a heuristic function: It is to

find a solution to a simpler problem, which is one with fewer constraints. A

problem with fewer constraints is often easier to solve. An optimal solution

to the simpler problem cannot have a higher cost than an optimal solution to

the full problem because any solution to the full problem is a solution to the

simpler problem.

1. h(n) in path search in maps

Consider the problem of finding the shortest path from Arid to Bucharest in
Romania. In the problem, the traveler is required to travel by roads shown
in the map. Let us consider a problem obtained by relaxing this condition.

Let the traveler be allowed

to travel by any method. In

this relaxed problem, the

shortest path from from a

city n to Bucharest is the air

distance between n and

Bucharest. We may use this

solution as the definition of

a heuristic function for the

original problem.

If n is any of the cities in Romania, we may define the
heuristic function h(n) as follows:
h(n) = The straight line distance (air distance) from n
to Bucharest.

Table : 1 shows the values of h(n).

Note that h(n)≥0 for all n and h(Bucharest)= 0

Now h*(n) is the length of the shortest road-path from
n to Bucharest. Since, the air distance never exceeds the
road distance we have

Thus, h(n) as defined above is an admissible heuristic
function for the problem

Table : 1

2. h(n) in the 8-puzzle problem

There are several restrictions, though not explicitly stated, on the movements
of the tiles in the 8-puzzle problem like the following :

1. A tile can be moved only to a nearby vacant slot.
2. Tiles can only be moved in the horizontal or vertical direction.
3. One tile cannot slide over on another tile.

We can get different admissible heuristic functions for the 8-puzzle problem
by solving simpler problems by relaxing or removing some of these
restrictions. We define two different heuristic functions h1(n) and h2(n) for
the 8-puzzle problem.

h1(n) is obtained by solving the problem without all the three restrictions
given above. h2(n) is obtained by solving the problem obtained by relaxing
first restriction to the restriction that “a tile may be moved to any nearby slot
and deleting the third restriction”.

h1(n) = Number of tiles out of position.

2. h(n) in the 8-puzzle problem

Eg. 1.

Consider the state shown in Eg. 1 and
compare the positions of the tiles with
their positions in the goal state. It can
be seen that only two tiles, namely 4
and 7 (ignoring the empty cell), are in
their positions. Hence, for the state we
have h1(n) = 6:

• Manhattan distance heuristic
We first consider the Manhattan distance between two cells in a grid of cells.
The Manhattan distance heuristic function is defined as follows:
h2(n) = Sum of the Manhattan distances of every numbered tile to its goal
position.
Eg: For the initial state n shown in Fig 1, we have
h2(n) =Manhattan distance of 1 from goal position+
Manhattan distance of 2 from goal position+
+……

Manhattan distance of 8 from goal position
=3 + 1 + 3 + 0 + 2 + 1 + 0 + 3 = 13:

3. h(n) in blocks world problem

We define a heuristic function
for the blocks world problem

Fig 1:

In the blocks world problem with the
initial and goal states as in Fig 1. In the
initial state, only block numbered “1”
is resting on the thing it is supposed to
be resting on. All other blocks are
sitting on the wrong things. Hence we
have:
h(Initial state) = +1 - 1 - 1 - 1 - 1 - 1 = -4:
Since in the goal state every block is
sitting on the right thing, we have
h(Goal state) = 1 + 1 + 1 + 1 + 1 + 1

= 6 ≠ 0

h(n) = Add one point for every block that is resting on the thing
it is supposed to be resting on. Subtract one point for every
block that is sitting on the wrong thing.

This is an example of a heuristic function not satisfying the
conditions h(n) ≥ 0 and h(Goal node) = 0.

4. h(n) in water jug problem

For the water jug problem, we may choose the following as a
heuristic function. For a state specified by the ordered pair
(x , y), we define

This function satisfies the condition h(n) ≥ 0 for all n. It does not
satisfy the condition h(Goal state) = 0, because as a goal state is
specified by a pair of the form (2 , y), we have

h(Goal state) = h(2 , y) = |y – 2|

5. h(n) in missionaries and cannibals problem.

To define a heuristic function for the missionaries and
cannibals problem, let us consider a simpler problem where in
we ignore the condition that at any location (on either bank of
the river or in the boat) the number of cannibals should not
exceed the number of missionaries.
Let k be the number of persons at the initial side of the river. If
k = 2 we need only 1 river crossing to take both persons to the
other side of the river.
k = 3 3
k = 4 5
k = 5 7
K= 6 9

?

The algorithm
The greedy best first search algorithm uses the following notations and conventions:

OPEN : A list which keeps track of the current “immediate” nodes available for
traversal.

CLOSED : A list that keeps track of the nodes already traversed.

h(n) : The heuristic function used as the evaluation function f(n),
that is, f(n) = h(n).

Algorithm
1. Create two empty lists: OPEN and CLOSED.
2. Start from the initial node (say N) and put it in the ordered OPEN list.
3. Repeat the next steps until goal node is reached.

(a) If OPEN list is empty, then exit the loop returning FALSE.
(b) Select the first/top node (say N) in the OPEN list and move it to the CLOSED

list. Also record the information of the parent node of N.
(c) If N is a goal node, then move the node to the CLOSED list and exit the loop

returning TRUE. The solution can be found by backtracking the path.
(d) If N is not the goal node, generate the immediate successors of N, that is, the

immediate next nodes linked to N and add all those to the OPEN list.
(e) Reorder the nodes in the OPEN list in ascending order according to the values

of the evaluation function f(n) at the nodes.

Example 1
Use the greedy best first search
algorithm to find a path from S
to C in the graph

Use the heuristic function:

CLOSED list, the goal state has been reached , the path from S to C is S →A →D →C

From the list of nodes in the

Let h(n) be a heuristic function associated with the search problem and g(n) be the cost
of traversing the path from the start node to the node n. In the A* best first search, we

use the following evaluation function:
f(n) = g(n) + h(n)

Example 1
Use the A best first search algorithm to find a path from A to C in the graph.

Use the heuristic function:

Solution
Step 1. We start with S.
Nodes A and B are immediate successors of S. We have
f(A) = g(A) + h(A) = 1 + 2 = 3
f(B) = g(B) + h(B) = 4 + 3 = 7
Min {f(A), f(B)}= min{3,7} = 3 = f(A)

So we move to A and the path is S →A.
Step 2. Nodes B and D can be reached from A. We have
f(B) = g(B) + h(B) = (1 + 2) + 3 = 6
f(D) = g(D) + h(D) = (1 + 11) + 2 = 14
Min { f(B) , f(D) } = min { 6 , 14 } = 6 = f(B)

So we move to B and the path so far is S→A → B.
Step 3. C (Goal state) can be reached from B.

Hence the required path is S→A →B→ C.

Example 2
Consider the graph shown in Figure. The numbers written on edges represent the
distance between the nodes. The numbers written on nodes represent the heuristic
value. Find the most cost-effective path to reach from start state A to final state J
using A* Algorithm.

